
Instrumentation and Analysis of MPI Queue Times
on the SeaStar High-Performance Network

Ron Brightwell∗ Kevin Pedretti Kurt Ferreira
Scable System Software Department

Sandia National Laboratories
Albuquerque, New Mexico 81785–1319
{rbbrigh,ktpedre,kbferre}@sandia.gov

Abstract—Understanding the communication behavior and
network resource usage of parallel applications is critical to
achieving high performance and scalability on systems with
tens of thousands of network endpoints. The need for better
understanding is not only driven by the desire to identify
potential performance optimization opportunities for current
networks, but is also a necessity for designing next-generation
networking hardware. In this paper, we describe our approach
to instrumenting the SeaStar interconnect on the Cray XT series
of massively parallel processing machines to gather low-level
network timing data. This data provides a new perspective on
performance evaluation, both in terms of evaluating the resource
usage patterns of applications as well as evaluating different
implementation strategies in the network protocol stack.

I. I NTRODUCTION

This study is a continuation of previous research into the
network resource usage characteristics of scientific parallel ap-
plications on distributed-memory massively parallel processing
machines. Our initial motivation for this work was a result
of our collaboration with Cray, Inc. to design a new high-
performance network for Sandia’s Red Storm machine [1],
which is the prototype of what has become the commercially
successful Cray XT series of machines. Cray’s initial design
for the SeaStar — a network interface and seven-port router
chip — presented some significant challenges for our antici-
pated use of the network. In particular, the SeaStar contains
a 500 MHz processor and only 384 KB of on-board RAM.
Since we anticipated using the processor and memory for
message processing activities, it was unclear whether the speed
and limited memory capacity would be able to support the
demanding communication requirements of our applications.

In our initial study [2], we analyzed network resource
usage characteristics important for offloading MPI protocol
processing. We instrumented the MPI implementation for
the Myrinet [3] high-performance network to gather data
that would help characterize the processing and memory
requirements of applications. We began by characterizing the
behavior of a well-known parallel application benchmark suite.
In a subsequent study [4], we used the same approach to

∗Corresponding author. Phone: (505)844-2099 FAX: (505)845-7442.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-94AL85000.

analyze the behavior of several of Sandia’s important parallel
applications. Following that, we extended our instrumentation
framework to differentiate between MPI point-to-point and
collective communication resource usage [5].

While these studies provided much needed information
about applications, many questions were still left unanswered.
Our initial results were obtained on Myrinet cluster, so it was
unclear whether we would see the similar behavior with a
network that is capable of offloading a significant amount of
message processing. Relative to some other parallel computing
platforms, the Myrinet cluster was unbalanced in terms of
the amount of compute power per node relative to the peak
injection bandwidth per node. We were anticipating that Red
Storm would be a much more balanced system and were
unsure what impact this would have on network resource
usage. We also were not able to do the level of instrumentation
that was needed to fully characterize certain behavior. For
example, we were able to easily determine the number of
incoming messages, but we were unable to determine when
a message had arrived from the underlying network relative to
when the application had requested to receive it.

After working together with Cray to develop and deploy
the Red Storm system, we can now use this platform for
further explorations in this area. By applying a similar in-
strumentation strategy for the SeaStar and extending it to
support more detailed information, we can attempt to answer
these questions. This type of data has also been critical
for research into designing next-generation high-performance
network hardware [6], [7].

In this paper, we describe our approach to gathering low-
level network performance data that we can use to characterize
the network resource usage of applications on a highly-
balanced massively parallel processing machine. In particular,
we extend the existing network to place timestamps on incom-
ing messages in order to have a more fine-grained analysis of
network and application behavior. The rest of this paper is
organized as follows. The next section provides background
on the SeaStar network hardware and software stack, while
Section III describes our approach to instrumentation. The
details of our test platform and the applications from which
we gathered performance data are describe in Section IV.
Performance results and analysis are provided in Section V.

We summarize the conclusions of this study in Section VI and
discuss avenues of future work in this area in Section VII.

II. BACKGROUND

A. MPI

The demands of a high-performance network for large-scale
parallel computing systems are driven by the way in which
applications use MPI. While MPI is typically not the only
upper layer protocol that makes use of the underlying high-
performance network, it is the most important for two rea-
sons. First, MPI performance has the largest influence on the
performance and scalability of network-bound applications.
Secondly, MPI is typically the only upper layer protocol where
the application programmer directly influences the use of the
network at both the source and destination. Other upper layer
protocols are usually provided by system services where the
application is only a client. Despite the presence of other
upper layer protocols, it is MPI that exudes the most stress
on network resources.

Conceptually an MPI implementation has two message
queues — one that contains a list of outstanding receive
requests (the posted receive queue) and one that contains a
list of messages that have already arrived for which there is
no matching receive request (the unexpected or early arrival
queue). The posted receive queue must be traversed each time
a new message arrives, while the unexpected queue must be
traversed each time a receive request is posted. This latter
operation — searching the unexpected queue and posting a
receive request — must be an atomic operation to ensure
the pairwise ordering semantics of MPI. To our knowledge,
all MPI implementations implement these two queues as
linear lists. While other strategies, such as hash tables, are
possible, their use is inhibited by the fact that MPI allows
for “wildcarding” source and message tag so that a posted
receive can match any one of several incoming messages. As
such, a hash table approach has the potential to speed up search
operations, but prohibitively increases the cost of insertion and
deletion operations, particularly with respect to zero-byte ping-
pong latency performance. In terms of network processing
capability, it is the management of these two queues that
largely determines the processing requirements of a network.

B. SeaStar

The SeaStar is an ASIC from Cray, Inc., that combines
a network interface and a high-speed seven-port router on a
single chip. The SeaStar is connected to an AMD Opteron
processor via a HyperTransport link. The current-generation
SeaStar is capable of sustaining a peak unidirectional injection
bandwidth of more than 2 GB/s and is able to sustain a peak
unidirectional link bandwidth of more than 3 GB/s. Each
SeaStar contains a 500 MHz PowerPC that can be used to
perform protocol processing activities. Each SeaStar alsohas
384 KB of on-board RAM. For a more detailed discussion of
the SeaStar network, see [8].

C. Portals

The lowest-level network programming interface for the
SeaStar is the Portals data movement layer [9]. Portals were
designed to be protocol building blocks that could be as-
sembled to implement a number of upper layer protocols.
In particular, Portals were designed specifically to support
a scalable, high-performance implementation of MPI. We
briefly describe the relevant Portals structures that are used
to implement MPI. See [10] for a more complete discussion.

Portals provides one-sided data movement operations, but
unlike other one-sided programming interfaces, the targetof a
remote operation is not a virtual address. Instead, the ultimate
destination of a message is determined at the receiving process
by comparing contents of the incoming message header with
the contents of Portals structures at the destination.

When an incoming message arrives at the destination, the
message header contains a destination Portal number which
is used to differentiate between upper layer protocols. MPI
allocates a specific Portal for matching incoming receives.
Attached to the Portal is a match entry (ME) that contains a set
of criteria that must match the incoming header. Messages can
be selected based on source node id (nid), source process id
(pid), and 64 bits of message tag. The destination can wildcard
nid and pid and also has 64 mask bits that can be used to
identify a subset of the tag bits to be used for matching.

Attached to each ME is a memory descriptor (MD) that
describes the location in memory where the incoming message
is to be deposited. There are a number of options associated
with each MD that determine how the matching message is
consumed. For example, the MD has an option to truncate
the incoming message to receive only as much data as the
receiver has requested. MDs also have a threshold value that
determines whether the MD can be used only once or used
multiple times.

An event queue (EQ) can be attached to an MD to record
the operations that have occurred on the MD. The EQ is a
circular queue of entries that captures the relevant state of the
MD at the time the operation completed. Portals has a split
event model where an event is generated when an operation
is started (START event) and a subsequent event is written
when the operation is completed (END event). This allows for
recognizing situations where a short message may arrive after
a long message but may complete before the long message.
It is also used to identify transfers that may have started
successfully but encountered a failure at some later point.MDs
have the option to turn off either START or END events or
ignore events altogether by not attaching an EQ to the MD.

D. Portals on the SeaStar

Because Portals is the lowest-level network programming
interface for the SeaStar, it was important to have a working
implementation as soon as possible so that other areas of soft-
ware development for the Red Storm machine could progress.
The initial implementation of Portals for the SeaStar was
developed by Cray and was based on the reference implemen-
tation from Sandia. In order to get something working quickly,

Cray chose an interrupt-driven strategy. When a message
arrives at the SeaStar, it copies the message header into kernel
space and interrupts the host processor. The host operating
system is then responsible for inspecting the message header,
traversing the Portals data structures, and programming the
DMA engines on the SeaStar to deliver the contents of the
message directly into user space.

While Cray continued to develop their interrupt-driven
implementation, Sandia worked on an implementation that
would do all of the Portals message processing work using
the SeaStar’s on-board PowerPC processor and avoid any
host processor involvement in message reception. Due to the
limited processing capability and available memory on the
SeaStar, it was unknown whether this strategy would have
the ability to support the demands of tightly-coupled parallel
applications using tens of thousands of endpoints. It was
this concern over the limited capabilities of the SeaStar that
motivated our initial work into characterizing the network
resource usage characteristics of MPI applications.

Sandia’s implementation of Portals using the SeaStar’s
processor has since been integrated into Cray’s production
software environment so that it is possible to switch between
using the interrupt-driven implementation, called Generic Por-
tals (GP), or the offloaded version, called Accelerated Portals
(AP), when a parallel job starts. Micro-benchmark results show
that AP has some significant advantages over GP. In particular,
AP has a 1-2µs latency advantage, a steeper bandwidth curve,
and much less host processor overhead [8]. However, no
formal study comparing application performance between the
two approaches has ever been conducted. Informal testing at
Sandia has shown that some applications can see a 10-15%
improvement in performance, but, for most applications, the
performance differential is not significant. For the applications
in this study, the performance difference between AP and
GP is not significant. The MPI queue times measured with
AP and GP are also highly similar, which indicates that AP
does not noticeably affect message queueing requirements at
relatively small-scale node counts we tested at. It is possible
that significant differences will arise in future testing onthe
full 12960 compute node Red Storm system.

III. A PPROACH

We are interested in the following measurements related to
the MPI queues:

• Average number of items that were inspected each time
the queue was searched.

• Maximum number of items that were inspected.
• Maximum number of items in the queue at any one time.
For the posted receive queue, the average items searched

gives us an idea of how many items must be looked at before
a matching receive is found. Ideally, each incoming message
would match the first entry in the list. The maximum number
of items that were searched places an upper bound on the
number of entries that an unexpected message had to traverse.
The maximum length of the posted receive queue provides an
upper bound on the number of outstanding receive requests

that the application has at any given time. This data point
helps us characterize the amount of memory that is needed to
hold these requests.

Similarly, for the unexpected queue, the average number of
items that were inspected gives some insight into the resources
that need to be given to handling unexpected messages. As the
number of items in the unexpected message queue grows, the
longer it takes to search this queue before posting a receive
request. The maximum number of items inspected and the
maximum length of the unexpected queue give us an idea of
the resources that are needed to search this queue.

One of the limitations of our previous work on MPI queue
analysis is that we had no way of knowing the arrival times
of messages. We could easily count the number of expected
and unexpected messages, but we had no way to determine
the arrival time of a message relative to the time that the
application posted a receive request. We therefore extended
our instrumentation environment with message timestamps to
collect this type of data. We are now able to determine how
long a message sat in the posted receive queue before being
matched or how long a message sat in the unexpected queue
before it was requested by the application.

We also added instrumentation to the MPI library to count
the number of times that Portals failed to post a receive due to
subsequent incoming messages. Since the process of searching
the unexpected queue and posting a receive must be atomic,
Portals provides a function that will conditionally insertan
ME into match list provided there are no pending events on
an event queue. The MPI library is responsible for processing
all of the events in the unexpected event queue. If no match
is found, then it calls the conditional insert function. If this
conditional insert fails, it means that a message has come into
the unexpected message queue and MPI must first see if this
is the matching message. We are interested in measuring how
often this fails to help determine whether the effectiveness of
this approach to getting atomicity.

A. Timestamps

Unlike our previous approach to instrumenting MPI to
gather data on queue processing and message arrival data, all
of the necessary information is not at the user-level inside
of MPI. In the MPI implementation for Myrinet, the MPI
library is responsible for managing both the posted receiveand
unexpected message queues. However, for the Portals MPI im-
plementation, the posted receive queue is completely managed
by Portals, so we needed to extend our instrumentation into the
Portals implementation and provide a mechanism for MPI to
retrieve this information. Here we describe the instrumentation
that was added to Portals and the mechanisms that the MPI
implementation uses to collect and record the data.

The instrumentation for the posted receive queue is straight-
forward. We keep a running total of the number of times the
match entry list on the MPI receive Portals was traversed. Each
time we traverse the list, we keep a count of the number of
items that were inspected. We add this value to a total count

in order to calculate the average, and we also compare it to a
maximum value.

We extended the Portals API in four different ways. First,
we added a timestamp field to the event queue entry so
that timestamps could be recorded with each event. We also
added three new function calls. The first new call provides a
mechanism for getting the current time from the Portals layer.
The second new call allows us to retrieve the time when the
last match entry as added was added into a match list. Finally,
we added a call that provides a current snapshot of the queue
instrumentation data.

Adding timestamps to the GP implementation was originally
thought to be relatively straightforward. The initial implemen-
tation used the Opteron processor’s timestamp counter as a
common timebase between the kernel-based Portals implemen-
tation and the user-level Portals library. Only after extensive
testing did we realize that this approach had a significant
problem–the timestamp counters of different cores within
the same multicore processor were not exactly synchronized.
While they all increment at the same rate, it is impossible toset
them all to the exact same initial value. This led to puzzling
results such as unexpected messages that appeared to arrive
after their matching receive was posted.

The solution to this issue was to always use the timestamp
counter on the PowerPC for timestamping events. In order to
provide this time to the application and OS kernel, we mapped
an area of SeaStar memory into user space and had the SeaStar
firmware update the mapped memory location with the current
time on every iteration through its main loop. An idle pass
through the main loop takes about 200 ns.

Retrieving the timestamp of the last entry that was added to
a match list was also straightforward. In order to record how
long a receive request had been sitting in the posted receive
queue, we needed to know the time when it had been inserted
in the match list. Our first attempt at this was to record the
creation time of the ME inside the Portals implementation and
then provide a function call to return this time for a specific
ME. After a successful atomic search and update, we imme-
diately call this function to get the ME creation timestamp.
Unfortunately, we did not account for a race condition where
the ME could be inserted and then immediately matched and
deleted before the application could call back into the library
to get the creation time. So rather than return the creation
time of a specific ME, the Portals implementation just keeps
track of the time the last ME was created. Every time MPI
creates a new ME, it obtains the create time of the previous
ME from the Portals implementation. This eliminates the race
and provides equivalent functionality.

IV. T EST ENVIRONMENT

In this section we provide an overview of the hardware and
software environment of our test system and briefly describe
the applications from which performance data was collected.

A. Platform

The machine used in our experiments is a Cray XT3/4
development system with 80 compute nodes. Each compute

node contains a 2.4 GHz dual-core AMD Opteron processor
and 2 GB of RAM. The software environment is based on Cray
software release 2.0.35 running the Catamount lightweight
kernel operating system. We provide performance results run-
ning in both single-node (SN) mode, where only one of the
processing cores on a node is used, and virtual-node (VN)
mode, where both cores are active. It should be noted that
Catamount does not support shared-memory communication,
so messages between the processes on the same node in
VN mode use Portals. The Cray MPI implementation sends
short messages, those less than 128 KiB, eagerly, and uses a
rendezvous protocol for larger messages.

B. Applications

We have collected results from several applications that
are an important part of Sandia’s modeling and simulation
workload, including CTH, SAGE, and ITS. We also include
results from HPCCG, which is a mini-application designed
to mimic the message passing and computation behavior of
several much larger and complex applications. We mad three
runs of each application for each configuration (SN/VN mode,
AP/GP mode) for each processor count from two to 160.

CTH is a multi-material, large deformation, strong shock
wave, solid mechanics code developed at Sandia. CTH has
models for multi-phase, elastic viscoplastic, porous and ex-
plosive materials. Three-dimensional rectangular meshes; two-
dimensional rectangular, and cylindrical meshes; and one-
dimensional rectilinear, cylindrical, and spherical meshes are
available. It uses second-order accurate numerical methods to
reduce dispersion and dissipation and to produce accurate,
efficient results. CTH is used for studying armor/anti-armor
interactions, warhead design, high explosive initiation physics,
and weapons safety issues.

SAGE, SAIC’s Adaptive Grid Eulerian hydrocode, is a
multi-dimensional, multi-material, Eulerian hydrodynamics
code with adaptive mesh refinement that uses second-order
accurate numerical techniques [11]. It represents a large class
of production applications at Los Alamos National Laboratory.
It is a large-scale parallel code written in Fortran 90 and uses
MPI for inter-processor communications. It routinely runson
thousands of processors for months at a time.

The Integrated Tiger Series (ITS) code, is a radiation trans-
port Monte Carlo code [12], [13]. ITS permits Monte Carlo
solution of linear time-independent coupled electron/photon
transport radiation transport problems, with or without the
presence of macroscopic electric and magnetic fields of ar-
bitrary spatial dependence. Physical rigor is provided by
employing accurate cross sections, sampling distributions, and
physical models for describing the production and transport of
the electron/photon cascade from 1.0 GeV down to 1.0 keV.
The sample problem set performs the Starsat MITS test with
CAD flow and geometry and ACIS simulation mode.

The HPCCG [14] mini-application is a simple conjugate
gradient solver that represents an important workload for
Sandia. It is commonly used to characterize the performance
of new hardware platforms that are under evaluation. The

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of Processes

CTH (SN)
CTH (VN)

HPCCG-W (SN)
HPCCG-W (VN)
HPCCG-S (SN)
HPCCG-S (VN)

ITS (SN)
ITS (VN)

SAGE (SN)
SAGE (VN)

Fig. 1. Short Unexpected Average Queue Time

majority of its runtime is spent in a sparse matrix-vector
multiply kernel. We ran HPCCG in both strong scaling (fixed
problem size) and weak scaling (scaled problem size) modes.

V. RESULTS

The amount of data that we have collected is too large to
cover in great detail in this study. Therefore, we limit our
analysis to only the data which our previous approach using
Myrinet did not support — namely low-level queue timing
data. In general, the data that we gathered relative to the
percentage of expected and unexpected messages is consistent
with our previous study and does not appear to be impacted by
the balance of the system. For the new data presented, we are
primarily interested in the scaling trends rather than absolute
values.

A. Short Unexpected Average Queue Time

Figure 1 shows the average time that a message sat in the
unexpected short message queue for the GP implementation.
In general, there was little difference between GP and AP.
We would hope that the queue time for a short unexpected
message is very short, since short unexpected messages tend
to consume buffer space and require memory copies. A short
queue time means that the application just missed being able
to post a matching receive. We can see that the queue time
is generally the same between SN and VN modes for most
applications, except in a few cases with ITS and SAGE where
the SN times are significantly longer than the VN times.

B. Long Expected Average Queue Time

Figure 2 shows the average time that a long expected mes-
sage sat in the MPI posted receive queue. These numbers are
for the GP implementation, as again the AP implementation
showed little difference. HPCCG did not send any messages
larger than 128 KiB. There are clearly some trends visible
in this graph. In all cases, there’s a consistent difference
between SN and VN modes, with the queue times for VN
mode consistently greater. The time for ITS scales with the

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of Processes

CTH (SN)
CTH (VN)
ITS (SN)
ITS (VN)

SAGE (SN)
SAGE (VN)

Fig. 2. Long Expected Average Queue Time

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100 1000

N
um

be
r

of
 It

em
s

Number of Processes

CTH (AP SN)
CTH (GP SN)
CTH (AP VN)
CTH (GP VN)

HPCCG W AP SN
HPCCG W AP VN
HPCCG W GP SN
HPCCG W GP VN
HPCCG S AP SN
HPCCG S AP VN
HPCCG S GP SN
HPCCG S GP VN

ITS AP SN
ITS AP VN
ITS GP SN
ITS GP VN

SAGE AP SN
SAGE AP VN
SAGE GP SN
SAGE GP VN

Fig. 3. Posted Queue Max Length

number of processes in the job, while the others tend to flatten
out. The data for SAGE seems to indicate that it is able to more
quickly retire long posted receive messages – perhaps without
any synchronization messages.

C. Maximum Queue Length

Figure 3 shows the maximum length of the posted receive
queue. We can see that the behavior this queue shows little
dependence on whether we are running in GP or AP mode
or SN or VN mode. Interestingly, the maximum length of
the posted receive queue for ITS is on a downward trend,
whereas the others are not. The maximum length for SAGE
seems to scale with the number of processes in the job, so
it will be interesting to see if this trend continues to larger
process counts.

The maximum length of the unexpected queue is shown
in Figure 4. Again, there does not seem to be a significant
difference between the various modes for these applications,
and the queue for SAGE appears to scale with the number of
processes in the job. Overall, these results for maximum queue
length agree with our previous results on Myrinet.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 10 100 1000

N
um

be
r

of
 It

em
s

Number of Processes

CTH (AP SN)
CTH (GP SN)
CTH (AP VN)
CTH (GP VN)

HPCCG W AP SN
HPCCG W AP VN
HPCCG W GP SN
HPCCG W GP VN
HPCCG S AP SN
HPCCG S AP VN
HPCCG S GP SN
HPCCG S GP VN

ITS AP SN
ITS AP VN
ITS GP SN
ITS GP VN

SAGE AP SN
SAGE AP VN
SAGE GP SN
SAGE GP VN

Fig. 4. Unexpected Queue Max Length

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 100

N
um

be
r

of
 T

im
es

Number of Processes

GP SN
GP VN
AP SN
AP VN

Fig. 5. Post failures - ITS

D. Post Failures

One of the more interesting and unexpected data points that
we discovered as a result of our instrumentation concerns the
number of times that MPI failed to successfully post a receive
because the atomic search-and-post operation failed. Figure 5
shows the number of times that ITS failed to post a receive due
to an incoming message. ITS sends and receives a relatively
small number of messages compared to the other applications,
so this small number of failures is not too surprising.

Figure 6 shows the number of post failures for HPCCG.
Here we see a significantly larger number of failures, with the
worst case being AP VN mode. Overall the number of failures
is still fairly reasonable.

Continuing on, we see the same data for SAGE in Figure 7.
Again, we see that the worst case is for AP VN mode. At 64
processes, the number of failures between AP and GP in SN
mode is nearly a factor 12. We also notice that trend for AP
and VN mode is increasing.

Finally, we see the same data for CTH in Figure 8. The
curves in this graph are nearly identical to those for SAGE,

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000

N
um

be
r

of
 T

im
es

Number of Processes

Weak GP SN
Weak GP VN

Strong GP SN
Strong GP VN
Weak AP SN
Weak AP VN

Strong AP SN
Strong AP VN

Fig. 6. Post failures - HPCCG

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000

N
um

be
r

of
 T

im
es

Number of Processes

GP SN
GP VN
AP SN
AP VN

Fig. 7. Post failures - SAGE

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 10 100 1000

N
um

be
r

of
 T

im
es

Number of Processes

GP SN
GP VN
AP SN
AP VN

Fig. 8. Post failures - CTH

except that the scale is much higher. This trend is disturbing,
and much more investigation is needed to determine why AP
and VN have so many more failures compared to GP SN mode.
This is perhaps one of the reasons that the micro-benchmark
performance increase seen with AP over GP is not reflected
in actual application performance.

VI. CONCLUSIONS

In this paper, we have described our approach to instrument-
ing the Portals implementation for the Cray SeaStar in orderto
gather low-level MPI message and queue information. While
our approach was similar to previous work that was done for
the Myrinet network, the SeaStar network provided a more
balanced system on which to collect performance data and
provided a chance to compare and contrast our previous results
with a network that is able to offload a significant part of the
message processing stack. In general, however, our resultsfor
the SeaStar are consistent with our previous results. Neither
the balance of the machine nor the offloading ability of the
network seemed to have an impact on the message passing
behavior of the applications that we studied.

Overall, there were few differences in the queue statistics
between the Generic and Accelerated implementations of
Portals. The queue behavior seems to be inherent in the
application and immune to whether message processing is
done by the host processor or offloaded to a network processor.
This is generally true for single-node versus virtual-nodemode
as well.

The most interesting difference between the various modes
that we have discovered is the difference in the number of
posted receive queue failures. A few of the applications we
tested showed a significant difference in the number of failures
when using VN and AP modes – as much as a factor of twelve
in some cases. Clearly this needs further investigation, and
we hope to augment our existing instrumentation to provide
further details about this discrepancy.

VII. F UTURE WORK

We intend to continue to use the instrumentation infrastruc-
ture described in this paper to gather data on more applica-
tions. The applications we selected for this study represent
a significant part of Sandia’s workload, but there are several
others that we would like to analyze as well. We also expect
to get dedicated time on the production Red Storm machine,
which currently has nearly 13 thousand compute nodes, to
continue to explore the impact of scale of low-level network
behavior. We also plan to explore some methods that will
allow for better instrumentation. Rather than just keeping
running averages and maximums of some values, we would
like to be able to keep more complete information to better
understand the distribution of data points and try to correlate
them with specific parts of the application. We would also like
to be able to separate out data for collective communication
from point-to-point communication as we did in previous
studies using Myrinet. Unfortunately, this will likely require
us to make some changes to both the MPI implementation

and our current instrumentation framework so that collective
communication operations can be identified correctly inside
the Portals layer. We are also interested in exploring how
protocols within the MPI implementation impact this type of
performance data. The Cray MPI implementation used in this
study is one of several that are available for Portals. There
are other implementations that employ different strategies and
protocols to achieve the same semantics. For example, past
studies have shown that sending all messages eagerly can
potentially lead to an increase in application performance,
and we would like to explore how this change impacts MPI
queue data. We are also exploring the possibility of adding
network timestamp data to InfiniBand so that we can gather
similar types of information for our applications on large-scale
commodity-based cluster machines.

REFERENCES

[1] W. J. Camp and J. L. Tomkins, “Thor’s hammer: The first version
of the Red Storm MPP architecture,” inIn Proceedings of the SC
2002 Conference on High Performance Networking and Computing,
Baltimore, MD, November 2002.

[2] R. Brightwell and K. D. Underwood, “An analysis of NIC resource
usage for offloading MPI,” inProceedings of the 2004 Workshop on
Communication Architecture for Clusters, Santa Fe, NM, April 2004.

[3] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz, J.N.
Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-second local area
network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, Feb. 1995.

[4] R. Brightwell, S. Goudy, and K. D. Underwood, “A preliminary analysis
of the MPI queue charateristics of several applications,” in Proceedings
of the 2005 International Conference on Parallel Processing, June 2005.

[5] R. Brightwell, S. Goudy, A. Rodrigues, and K. Underwood,“Implica-
tions of application usage characteristics for collectivecommunication
offload,” International Journal of High-Performance Computing and
Networking - Special Issue: Design and Performance Evaluation of
Group Communication in Parallel and Distributed Systems, vol. 4, no.
3/4, 2006.

[6] K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, and
R. Brightwell, “A hardware acceleration unit for MPI queue processing,”
in 19th International Parallel and Distributed Processing Symposium
(IPDPS’05), April 2005.

[7] K. D. Underwood, A. Rodrigues, and K. S. Hemmert, “Accelerating list
management for MPI,” inProceedings of the 2005 IEEE International
Conference on Cluster Computing, September 2005.

[8] R. Brightwell, T. Hudson, K. T. Pedretti, and K. D. Underwood,
“SeaStar interconnect: Balanced bandwidth for scalable performance,”
IEEE Micro, vol. 26, no. 3, May/June 2006.

[9] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K. Underwood,
“Implementation and performance of Portals 3.3 on the Cray XT3,”
in Proceedings of the 2005 IEEE International Conference on Cluster
Computing, September 2005.

[10] R. Brightwell, A. B. Maccabe, and R. Riesen, “Design, implementation,
and performance of MPI on Portals 3.0,”International Journal of High
Performance Computing Applications, vol. 17, no. 1, pp. 7–20, Spring
2003.

[11] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings, “Predictive performance and scalability modeling of a
large-scale application,” inProceedings of the ACM/IEEE International
Conference on High-Performance Computing and Networking (SC’01),
November 2001.

[12] B. C. Frankeet al., “ITS version 5.0: The Integrated TIGER Series of
coupled electron/photon Monte Carlo transport codes with CAD geom-
etry revision 1,” Sandia National Laboratories, Tech. Rep.SAND2004-
5172, September 2005.

[13] M. Rajan et al., “Performance analysis, modeling and enhancement of
Sandia’s Integrated TIGER Series (ITS) coupled electron/photon Monte
Carlo transport code,” inProceedings of the Los Alamos Computer
Science Institute Symposium, October 2005.

[14] M. Heroux, “HPCCG MicroApp,” July 2007, http://www.cs.sandia.gov/
∼maherou/HPCCG-0.3.tar.gz.

